a2 United States Patent

Guo et al.

US009205996B2

US 9,205,996 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(63)

(1)

(52)

(58)

SORTING, SWAPPING, AND ORGANIZING
OBJECTS ON TRANSFER BALL GRIDS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Shang Q. Guo, Cortlandt Manor, NY
(US); Christopher P. Jones, Las Vegas,
NV (US); Jonathan Lenchner, North
Salem, NY (US); Nathan E. Masters,
Henderson, NV (US); James A. Oravec,
Las Vegas, NV (US); Rodrigo A. Rey,
Las Vegas, NV (US); Matthew R.
Sowders, Kirkland, WA (US)

International Business Machines
Corporation, Armonk, NY (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

14/298,710
Jun. 6,2014
Prior Publication Data

US 2015/0107961 Al Apr. 23, 2015

Inventors:

Assignee:

Notice:

Appl. No.:
Filed:

Related U.S. Application Data

Continuation of application No. 14/058,809, filed on
Oct. 21, 2013.

Int. Cl1.

B65G 13/00 (2006.01)

B65G 43/10 (2006.01)

B65G 37/00 (2006.01)

U.S. CL

CPC ... B65G 43/10 (2013.01); B65G 37/00

(2013.01)
Field of Classification Search

CPC ... B65G 13/065; B65G 13/12; B65G 39/12;
B65G 13/11; B65G 39/025; B65G 2207/34
USPC oo, 198/782, 457.02, 370.03, 370.09,

198/371.3, 464.1; 193/35 MD
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

3,020,993 A
3,466,697 A

2/1962 Heinrich et al.
9/1969 Cain et al.

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2001140873 5/2001
JP 2004019877 1/2004

OTHER PUBLICATIONS

Murphy et al, “Implementations of a model of physical sorting”,
Pre-proceedings of the workshop From Utopian to Genuine Uncon-
ventional Computers, University of York, UK, Luniver Press, pp.
79-99, Sep. 2006.

(Continued)

Primary Examiner — James R Bidwell
(74) Attorney, Agent, or Firm —Van Leeuwen & Van
Leeuwen; Steve Kurtowecz

(57) ABSTRACT

An approach is provided to sort objects on a surface of verti-
cally-adjustable low friction transfer modules that are con-
trolled by processors. A request to sort the plurality of objects
in a horizontal direction is received with each of the objects is
assigned a sort position. Sets of the vertically-adjustable low
friction transfer modules are selected. The vertically-adjust-
able low friction transfer modules are arranged in a grid
formation on the surface, with each of the sets of selected
transfer modules being underneath a different object. The sets
of selected transfer modules are vertically adjusted causing
each of the objects to move independently from the other
objects while avoiding the other objects in two or more
dimensions formed on the surface. The result of the move-
ment is that each of the objects is moved to a position respec-
tive of the other objects according to each object’s respective
sort position.

7 Claims, 22 Drawing Sheets

Object moves in virtually
any direstion based on
transfer modules being
raised and lowered

Surface {e.g., warehcuse floor, sig,
300

Floor sensors cetact

" object position
330

Transfer ball grid
310

Vertically adjustable
transfer macules 325

US 9,205,996 B2
Page 2

(56)

3,876,255
4,660,994
4,884,676
4,981,209
5,035,315
5,088,585
5,101,983
5,377,819
5,509,526
5,573,105
6,000,523
6,164,429
6,279,716
6,340,065
6,401,900
6,457,865
6,516,934
7,007,787
7,055,671
7,735,781
7,878,319
8,312,981
8,474,596
8,577,496
8,577,497
8,960,401
2003/0234155
2005/0189268
2007/0273086

References Cited

U.S. PATENT DOCUMENTS

> > 0 0 e >

Al

4/1975
4/1987
12/1989
1/1991
7/1991
2/1992
4/1992
1/1995
4/1996
11/1996
12/1999
12/2000
8/2001
1/2002
6/2002
10/2002
2/2003
3/2006
6/2006
6/2010
2/2011
11/2012
7/2013
11/2013
11/2013
2/2015
12/2003
9/2005
11/2007

Tlon
Masciarelli
Suizu

Sogge
Fukusaki et al.
Lambert

Scata

Horton et al.
Bonnet
Palmaer

Asai et al.
Masciarelli, Jr.
Kayatani et al.
Harris
Masciarelli, Jr.
Masciarelli, Jr.
Masciarelli, Jr.
Pallini et al.
De Guglielmo et al.

Moritzetal. 198/371.3
Costanzo et al.

Franz ..o, 198/370.09
Wolkerstorfer et al. . 198/370.09
Masters et al.

Masters et al. 198/778
Parsons et al. 193/35SS
Kanamori et al. 193/35 MD
Zimmermann

Stemmle

2010/0065400 Al 3/2010 Pruett et al.
2010/0243407 Al 9/2010 Anderson et al.
2011/0073442 Al 3/2011 Rauetal.
2011/0114453 Al 5/2011 Doan
2011/0315510 Al 12/2011 Palamides et al.
2012/0036705 Al 2/2012 Gehris
OTHER PUBLICATIONS

Adlemann, “Mollecular computation of solutions to combinatorial
problems,” Science, vol. 266, pp. 1021-1024, Nov. 1994.

Benenson et al., “Programmable and autonomous computing
machine made of biomolecules,” Nature, 414, pp. 430-434, Nov.
2001.

Calude et al., “Computing with Cells and Atoms: After Five Years,”
Center for Discrete Mathematics and Theoretical Computer Science,
CDMTCS-246, Aug. 2004, 25 pages.

“Amazon.com to Acquire Kiva Systems, Inc.,” Business Wire, Mar.
19, 2012, 2 pages.

Mountz, “Robots to the Rescue,” Harvard Business School Alumni
Bulletin, Mar. 2012, 3 pages.

Ryan, “Robots in Disguise,” Supply Chain Digital, Feb. 2012, 2
pages.

Masters et al., “Sorting, Swapping, and Organizing Objects on Trans-
fer Ball Grids,” U.S. Appl. No. 14/058,809, filed Oct. 21, 2013, 72
pages.

Office Action for U.S. Appl. No. 14/058,809 (Guo et al., “Sorting,
Swapping, and Organizing Objects on Transfer Ball Grids,” filed Oct.
21,2013), U.S. Patent and Trademark Office, mailed May 27, 2015,
10 pages.

* cited by examiner

U.S. Patent

Dec.

8,2015 Sheet 1 of 22 US 9,205,996 B2

Information Handling System

F I G' 1 . Processor(s) ’ 100
110
System Memor Y Y
Y 120 Y 12— .| Processor Interface Bus
Memory North Bridge | PCI : i
Memory : Express g raphics Display |
7 ontroller i
Controller ‘ 195 130
Memory 15 118 —
119 Y J— | USB Storage Device } 145
DMI """"""""""""""""" -1 USB Device USB
Bus e Devices
 USB Device. "
, 144
i Keyboard and Trackpad } .
—— — 148
Y Biuetooth |~ 14
ExpressCard PC! Express 1-lane | ‘/m ’ 8
155 | UsB {f JIR Receiver
i Controller == 150
uss - 140
802.11 Wireless PCIExpress tane |
175 162 -
172 - h L
Audio
EFI-Boot Mgr. 8Pl bus + Circuitry
180 160 =)
T 178 -/ South Bridge | 9% 7 L T = output and
- I/O Device and | headphone jack
Disk Controller | intemal (™ | b 11| intemal
Internal ATA O!: UATA bus 135 Micmphoﬁ’e\\ 66 /] Speakers
Hard Drive 184 o 168
L ;ﬁ? o PC! Express 1-lane (‘)Eg:?rrc;}gr
Serial ATA bus 170
192 .
Optical drive ™., - 188 LPC Bus TPM
~—190 i T 195 |
“Legacy’ LPC Bus Boot |
1o) LPC Bus . ROM
Devices| i 1%
w0 |

U.S. Patent Dec. 8, 2015 Sheet 2 of 22 US 9,205,996 B2
Storage Device
145 — .. (e.g., USB drive)
Il S Personal Computer
o Insert
Insert "~
. - 20 Workstation
230
j ~ 240
220 \ 1 ///,
g /
,\‘\\\ \\
260
Computer Network
- (e.g., LAN, WLAN, the Internet, |, .~) .
b PSTN, Wireless, etc.)
Hand held computer/ 200
Mobile telephone
S
. 270 Nonvolatile
/ Data Store
: 265
Information L
Handling System
280
Mainframe Computer v
-
- B Nonvolatie
- : Data Store

{e.g., hard drive,
database, efc.)

Nonvoilért—ilﬁéwlsgté Store

-

FIG. 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 22 US 9,205,996 B2

Object moves in virtually
any direction based on
transfer modules being
raised and lowered

Floor sensors detect

object position
330

7 Vertically adjustable
Transfer ball grid —~ transfer modules 325
310

U.S. Patent Dec. 8, 2015 Sheet 4 of 22 US 9,205,996 B2

Transfer modules in
recessed (stopped) position Transfer module

/" housings
Floor surface ! \ 7 _ Transfer module floor

¥ \ /" surface aperture

\ Sensor 330
“-— detects object
covering aperture

Electronically activated
piston raisesflowers
transfer ball

a0 /' 00— Fl G. 4A
N N

L 325

Transfer modules in position
to move objectleft toright a

FIG. 4B

Object Movement >

Floor surface —,
«
L X X J L X X
{more transfer < {more transfer
modules atreqular 9 modules at regular
intervals) infervals)
. T 325
451 —
’ e 453

420 T 4w 0 20

U.S. Patent Dec. 8, 2015 Sheet 5 of 22

Transfer Ball Control
500
v

Operator (e.g., process, user, efc.) selects object for movement

A 4

US 9,205,996 B2

FIG. 5

210
y
Operator selects movement direction and destination
920
v
Select transfer modules located under object
525
v
Signal selected units: initiate movement
{See Figure 9)
530
v
Select transfer modules located proximate to object in direction of
movement path
240
v
Signal selected unils: prepare fo receive object
{See Figure 9)
550
v
Initialize Movement
(See Figure 6)
260
v
Continue Movement
{See Figure 7)
570
v

J N

< Object at destination? \ No

)
l

Yes

v

Controlled Stop
{See Figure 8)
570

Yes / Change direction/destination? N End
= N\ 580 ° 595

U.S. Patent Dec. 8, 2015 Sheet 6 of 22 US 9,205,996 B2

Initialize Movement

FIG. 6

C

600

)

v

Retrieve increment heig

610

ht for movement speed

y

Initialize lower hei

ght = initial height

y

Initialize raise height = inifial height
620

E3

[dentify number of sets of transfer modules under urit from front to
back with front being towards movement direction

v

Midpoint = number of sets / 2
630

Lower front side modules

Raise back side modules

] i
I i
: 640 | ; 670 |
i Select firstinext set of units from I {| Selectfirstinext set of units from !
| > midpoint o front [| midpoint fo back |
| 845 |] g !
I ¥ i

n L :
i lower height = | i raise height = ‘
l lower height - incremental height || || aise height + incremental height I
| 650 I | 680 i
v | v |
' Signal selected units: I ’ Signal selected units:]
' <lower height> value | ’ <raise height> value }
! (See Figure 9) |] (See Figure 9) |
{ 655 | f 685 |

|] v
Yes | Yes |
' More units? | ’ More units? }
] 660 [| 690]
' | ‘ |
b e e e e e e e e - — - - - a— b e e e e e b e e e e - —
No No

Retumn
695

U.S. Patent Dec. 8, 2015 Sheet 7 of 22 US 9,205,996 B2

Movement
700
Retrieve increment height for

F ’G. 7 moverrzlfeLrg)t speed
v

Select first/next set of modules from back
to front of object with front being the
direction of movement
120

v

Signal selected units:
INCREASE by incremental height

Yes (See Figure 9)
730
More transfer modules?
740
No

v

Select transfer modules located proximate to object in direction of
movement path
750

v

Signal selected transfer modules: prepare to receive object
(See Figure 9)
760

!

Select fransfer modules located behind object in direction away from
movement path
770

Signal selected transfer modules: fully retract
(See Figure 9)
780

Return
795

U.S. Patent Dec. 8, 2015 Sheet 8 of 22 US 9,205,996 B2

< Controlled gégp of Object > FIG 8

v
Retrieve increment height to stop from movement speed
810
4
Identify number of sets of transfer modules under unit from front to
back with front being towards movemerit direction L
815
v
Midpoint = number of sets / 2
820
______ ¥ ¥
Raise front side modules 825 Lower back side modules 850
Select firstnext set of units from Select firstnext set of units from
o midpoint to front midpoint to back a
830 853
v v

Signal selected units:

!
!
!
!
!
!
INCREASE <incremental> i DECREASE <incremental>
!
!
!
f
{

| |
| |
| |
| |
| |
| Signal selected units: |
| |
| |
| |
| |
| |

|

(See Figure 9) See Figure 9
83 See e
M its? M * its?
ore units? ore units’ Yes
Yes——d, 840 > < 865 >—
L — | ____________ |_ ________
No No
v v
Height = last front-side ball unit height
870
v
Select transfer modules located proximate to object in direction of movement path
875
v
Signal selected transfer modules: raise to <height> (See Figure 9)
880
v
Object stopped? S\ N

_88_5 / (A LV,
|

No

\ 4

Signal modules under object and

back side modules no longer under abject: fully refract Retumn
{See Figure 9) 895

890

U.S. Patent Dec. 8, 2015 Sheet 9 of 22 US 9,205,996 B2

<Transfer Module Process (at each modu!e))
900

Retrieve grid configuration settings Grid

(initial height, lowest height, etc.) L R Canfig
910 Settings
T 920

Wait for first/next request

925
v ‘-r\:tlo

Request received?
930

4

Yes
_p| | This madule’s Retrieve current height of this transfer module
: current height > 935
? 940 “I“

/ Request type?

initiate fully retract
{ N 3

Raise module to

initial {uniform) Fully lower
i | height Zetl forall { prepareto numeric INCREASE or module
moauies receive i i
| (e.g. 4inches) height value DECREASE mtg g][())or
Ll S g
Raise
: Raise module to {INCREASE) or
lowest usable MOZ? égwnuig tp lower
5 level requested value (DECREASE)

{e.g., ¥ainch) 970 module by
i 965 = specified amount
E 975
; A 4 A4 A 4
____________________ ‘ Save {ransfer module’s current height after movement P
990 D

FIG. 9

U.S. Patent Dec. 8, 2015 Sheet 10 of 22 US 9,205,996 B2

One-Dimensional Object Sort Virtual sort of objects in row by f~~=~~~~
1000 ¥ object sort value into desired order L 4
— 1035
v Desired
. . .| Select first/next object in row (Col) Object
Receive r;qsuls;} etor Os\zrt objects > 1045 Order
105 3 1040
Retrieve desired order of '
i selected object (OBJ_POSITION) [d=~=~~~~ .
ves 1050
Identify number of objects in T
row {0 sort NEW_ROW = OBJ_POSITION
1010
l 1055
: - Transfer Ball Control ™~
Identfty space available on floor Move Object(Row, Col) to (NEW_ROW, Col) | | &
(grid) surface : -
1015 {See Figure 5) b
— 1060
I —
Enough space for each LyYes More objects in row? >
. ‘ 1065
object to have its own row? 7
1020 No
v
| . Select first/next object
Nf g 1070
Minimal Space One- Transfer Ball Controf (o]
Dimensional Object Sort Move Object{Row, Col) to (Row, Row) %
(See Figure 13) (See Figure 3) &
1075
1025
y
More objects?
End Yes 1078
1030 T
No
¥
. Select first/next object
g 1080
v
Transfer Ball Control <
Move Object(Row, Col) to (1, Col) &
FI G_ 10 {See Figure 5) by
1085
y
More objects?
Yes lQQQ No

End
1005

US 9,205,996 B2

Sheet 11 of 22

Dec. 8, 2015

U.S. Patent

Transfer ball grid

—_—_—— e e e e e — —— — —

Surface (e.g., warehouse floor, efc.)

310

300

2%e2%
Object C

L) L
ouo ﬂo =
L5 d O
DO o] D
o's %Y =2
) ® O
) ®
o ®
o o®.
L5 % O
1% 8.0 ©
° o0 | DO]
o % O
@ ® (@)]
)
° ®
O e® {
o0 ®.0 LU
o0 o8l = }
8.9 ®e®, RN
O e !
O ® (@]
D)]
L) ®
L ©.®
o el O]
) sl
o° » 3 |
o° = {
p) (@]
®]
"o ooonu-uouou |
2%0%% e s e e e s e 2’ e s s % e e e Y% e e 0 %%

Surface {e.g., warehouse floor, etc.)

|

OEBIAEE
SOOI

300

U.S. Patent Dec. 8, 2015 Sheet 12 of 22 US 9,205,996 B2

Surface (e.g.. warehouse floor, efc.)
300

20 88658380000 88358ee8008080860
............Q.:.l'.....Q...
L) L) LK M)

.....Q.....‘...ﬂ.. L)

_Step3

1130

Surface (e.g., warehouse floor, etc.)

300
'0....‘......I.....0.0‘Q.I..'...........‘......0.0‘Q.I..‘.......‘.......
LG)

o sCerare
.:.. ()

el Q

oorets R

seeees oo _ Step 4
0.6 & L) -

s & s

L) LJ

.... ..C

.. L) ..

..

..

.'

.‘

..

)
)
o ® & 5
... @ =
PO Object B Object E
L)
..
®

FIG. 12

U.S. Patent Dec. 8, 2015 Sheet 13 of 22 US 9,205,996 B2

C/Iinimal Space One-Dimensional Object So@
1300

Initialize:
Length = number of objects to sort
FIG_ 13 Swaps = FALSE
Start =1
1305

)
i = Start <
1310 A

v
j=it .
1315 A

v

Ves /" Object(i) > Object()?
Swap Object(i) and Object(j) I
(See Figure 14)
1325 No
T !
Set Swaps = TRUE R j=i+2
1330 g 1335
- i >= Length?

Swaps = False?

Set Swaps = FALSE
1345

1350

Yes
End l— —1
1395

Start =2

Ny

Start = 1
1360 1365
v :

Wait for physical movement of objects on grid to complete
1370

U.S. Patent

Dec. 8, 2015

Sheet 14 of 22

Swap Objects(i,)
1400

!

)

Transfer Bali Control

(See Figure 5)
1410

Move Object(j) UP one grid position

!

Wait until Object(j} movement completed

1420

v

v

Transfer Ball Control
Mave Object(j) LEFT one grid position

Transfer Ball Control

Move Objeci(i) RIGHT one grid position

{See Figure 5) (See Figure 5)
1430 1440
Wait unti! Object(i} and Object(j) movements completed
1450

Transfer Ball Control

{See Figure 5)
1460

Move Object(j) DOWN one grid position

!

1470

Wait until Object(j} movement compieted

Retumn
1495

FIG. 14

US 9,205,996 B2

U.S. Patent Dec. 8, 2015 Sheet 15 of 22 US 9,205,996 B2
Start
Co ¥ S
""""" [Swapping Details ’
l 1510 ’
slalsl1]sl7]3]2 |
1500 |
N ¥ , o 1500 |
Start Swap Swap 1 [4lslel7]5]713]2 :
S — L5 |
& I {
ssl1]s]5 7 23] : 1 51+ 1915
VoV 1 {afsi6] |5]7]3 '
Start Swap Swap Swap | :
Co™ ¥ - ﬂ a
k1530 ; 5 |
f. o 1520
G
|
Start Swap Swap Swap Swap | ;
Coi ; ;,. 77777777 1 540 : o 1 525 !
= |
- alsf1lels]7]2]3
1]afslsl2lelsl7|" : i
VoV | o _ |
Start Swap Swap
Cal v
W 1550
1]alsl2ls]slsl7]"
Start Swap Swap
o ¥ . FIG. 15
14121513]8l6]7]"
Start Swap Swap Swap
Col v N
> 1570
tlz2faf3isie|8]{7]|"
Swap Swap
"
1]2]s]afsfe]7]8] 1580

U.S. Patent Dec. 8, 2015 Sheet 16 of 22 US 9,205,996 B2

Sort Two Dimensional Matrix of Objects
1600

Receive unsorted matrix(x,y) to be sorted into same matrix pattern
Allocate 4 x columns grid space on transfer ball grid
Allocate 2 x rows grid space on transfer ball grid
1610

v

Physically Spread Objects on Grid
(See Figure 17)
1620

¥
Current Virtual sort of objects by object sort value Sorted

Object Leeeeaa- = into sorted matrix of rows/columns ~ F=-=-~ > Object
Matrix 1630 Matrix

1625 7 1635

Move Objects to Proper Rows :
{See Figure 18) g~ mmm e :
1640

]
Group Objects
{See Figure 19)

1650

¥
Row=2
1660
v

One Dimensional Object Sort of Objects in Row
{See Figure 13)
1670

v
Row=Row + 2
1675

/ R 'n“m e Pack Rows
s oW in mairix: >——‘No-—-—-> {See Figure 20)

End
1685

A 4

FIG. 16

U.S. Patent Dec. 8, 2015 Sheet 17 of 22 US 9,205,996 B2

Spread Objects on Grid
1700

Y

Initialize Row = Highest Row and Col = Highest Column of Original Matrix
716

!

NEW_ROW = Raw * 2
1720

v

NEW_COL = (Col * 4) - (4 — Row)
1730

v

Transfer Ball Control
Move Object(Row, Col) to (NEW_ROW, NEW_COL)
(See Figure 5)
1740

v

Row = Row - 1
1750

T
Row = 07 N\
£—Yes 1760 / No

Col = Coi - 1
770

A

-

Initialize Row = Highest Row Original Matrix
1790

FIG. 17

NO~pe]

U.S. Patent Dec. 8, 2015 Sheet 18 of 22 US 9,205,996 B2

Move Objects to Proper Rows
1800

v

lnitializ%?)w =2 FIG_ 18

Col =Row/2
1820

1

Select identifier of Object currently
at Row, Col
1830

¥

Retrieve proper row (NEW_ROW) Sorted
for selected Object from sorted | _ _______] Object
matrix Matrix

1840
1635
y

Transfer Ball Contral

Yes Move Object(Row, Col) to (NEW_ROW, Cof)
(See Figure 5)

Yes 1850

¥
Col =Col + 4
1860
v
/ Column Exists? >

\ 1870
|
No

¥
Row = Row + 2
1880
!
/" Row Exists?
N 1890

i
No

Return
1885

A 4

A 4

U.S. Patent Dec. 8, 2015

Sheet 19 of 22

US 9,205,996 B2

C

Group Objecls
1900

v

FIG. 19

Row=2
1910

v

Col=1
1920

A

¥

NEW_COL =1
1925

)

A 4

'
AN

Yes

Object at Row, Col?
1944

A4

Transfer Ball Control
Move Object{Row, Col) to (Row, NEW_COL)
(See Figure 5)
1850

¥

Y

NEW_COL = NEW_COL + 1 >

Col = Col + 1
1970

1960

Cal not in matrix?
1973

>____

Yes

y

Row=Row + 2
1980

:

Row not in matrix?
1990

N
e

Retumn
1995

U.S. Patent

FIG. 20

Dec. 8, 2015

Sheet 20 of 22

C

Pack Rows
2000

)

A 4

NEW_ROW =1
2010

Y

Row=2
2020

Y.

Select entire row

2030

of objects at Row |

US 9,205,996 B2

4

A4

Transfer Ball Control

(See Figure 5)
2040

Move entire row of objects from Row fo NEW_ROW

!

NEW_ROW = NEW_ROW + 1

2050

!

Row =Row + 2
2060

Y

<

Row outside matrix?
2070

N

d

Yas

Retum
2095

U.S. Patent

[nitial Matrix
{unsorted)

FIG. 21

Spread
Objects

Move Objects
to Proper
Rows

Dec. 8, 2015 Sheet 21 of 22 US 9,205,996 B2
2100
s[8]7]e o
319111115
216 {10114
115112413
2110
s
4 16
3 1 15
2 10 14
1 12 13
2120
el
4131211
11110412
16115114113

U.S. Patent Dec. 8, 2015 Sheet 22 of 22 US 9,205,996 B2

P 2200
-
44131211
Group 86517
Objects
9 {111{10112
16115{14{13
FIG. 22
_— 2210
.
1121314
One
Dimensional |56 |718
Sort of Each
Row 9 [10[11]12
13114115116
2220
112 4 -
]
9110111112

Pack 113114115116
Rows

US 9,205,996 B2

1

SORTING, SWAPPING, AND ORGANIZING
OBJECTS ON TRANSFER BALL GRIDS

BACKGROUND OF THE INVENTION

The efficient movement, storage and retrieval of objects is
a nearly universal challenge, but is particularly well illus-
trated in the context of a warehouse where crates or pallets are
received, stored for a certain time, then retrieved and dis-
patched. In modern warehouses, the warehouse inventory and
storage plan is typically computerized in a warchouse man-
agement system (WMS), but the actual storage and retrieval
of the stored objects is a physical, often manual, process.
There are a number of current approaches to moving objects
within a warehouse environment. At the most basic, WMS
can provide the location of the object to be stored or retrieved
to ahuman, and the human can drive a forklift to the specified
location. This approach has several drawbacks. First, a rela-
tively large number of individuals are required to perform the
relatively monotonous task of repeatedly storing and retriev-
ing objects. This can lead to both significant personnel costs,
as well as an increased rate of human error due to fatigue and
boredom. Additionally, the number of forklifts on the ware-
house floor at a time is limited, since it is difficult for the
operators to efficiently find alternate paths in the case that the
main path is congested. Furthermore, the warehouse shelving
and objects are traditionally labeled for reference by the
human operators. Labeling is somewhat troublesome and is
generally unnecessary in an automated system. More
advanced systems utilizes robotic forklifts to execute the
storage and retrieval of the managed objects. Robotic forklifts
are integrated with the WMS to automatically take objects
from an incoming dock to a storage location, or from the
storage location to an outgoing dock. The use of robotic
forklifts eliminates the issues of human error and fatigue, as
well as limiting the personnel costs to the individuals required
to maintain the forklifts. Additionally, since the robotic fork-
lifts are in constant communication with a dispatching sys-
tem, they are able to dynamically find paths that are not
obstructed by other robotic forklifts, allowing an increase in
density over human-operated forklifts. However, the robotic
forklifts are complex, and require significant maintenance
and specialized parts to repair. Additionally, the forklifts
require a certain amount of space to maneuver, so the density
of objects being moved is limited. Conveyer belts is another
traditional approach used to transport objects, particularly in
factories and shipping facilities. Conveyer belts provide auto-
matic movement of objects from one point to another along a
fixed path. However, being a fixed system, conveyer belts
generally lack the flexibility found in other systems, because
the layout of conveyer belts requires significant time and
effort to change, as well as requiring potentially lengthy work
stoppages.

SUMMARY

An approach is provided to sort objects on a surface of
vertically-adjustable low friction transfer modules that are
controlled by processors. A request to sort the plurality of
objects in a horizontal direction is received wherein each of
the objects is assigned a sort position. Sets of the vertically-
adjustable low friction transfer modules are selected. The
vertically-adjustable low friction transfer modules are
arranged in a grid formation on the surface, with each of the
sets of selected transfer modules being underneath a difterent
object. The sets of selected transfer modules are vertically
adjusted causing each of the objects to move independently

10

15

20

25

30

35

40

45

50

55

60

65

2

from the other objects while avoiding the other objects in two
or more dimensions formed on the surface. The result of the
movement is that each of the objects is moved to a position
respective of the other objects according to each object’s
respective sort position. In a second variation a request to sort
aplurality of objects in both vertical and horizontal directions
are received with selected vertically-adjustable transfer mod-
ules moving in concert to accommodate the sort the sort
request. Again the result of the movement is that each of the
objects is moved to a position respective of the other objects
according to each object’s respective sort position.

The foregoing is a summary and thus contains, by neces-
sity, simplifications, generalizations, and omissions of detail;
consequently, those skilled in the art will appreciate that the
summary is illustrative only and is not intended to be in any
way limiting. Other aspects, inventive features, and advan-
tages of the present invention, as defined solely by the claims,
will become apparent in the non-limiting detailed description
set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings, wherein:

FIG. 1 is a block diagram of a data processing system in
which the methods described herein can be implemented;

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide variety
of information handling systems which operate in a net-
worked environment;

FIG. 3 is a diagram showing a transfer ball grid capable of
moving an object in many different directions;

FIG. 4A is a diagram showing two transfer ball housings
that would provide two of the transfer balls in the transfer ball
grid shown in FIG. 3;

FIG. 4B is a diagram showing activation of three transfer
ball housings within the transfer ball grid shown in FIG. 3
activated to move the object in a particular direction;

FIG. 5 is a flowchart showing steps performed to use the
transfer ball grid to move an object;

FIG. 6 is a flowchart showing steps performed to initiate
movement of an object using the transfer ball grid;

FIG. 7 is a flowchart showing steps performed while mov-
ing an object using the transfer ball grid;

FIG. 8 is a flowchart showing steps performed during a
controlled stop of the object being moved using the transfer
ball grid;

FIG. 9 is a flowchart showing processing performed at each
transfer ball unit to process commands received at the unit;

FIG. 10 is a flowchart showing processing used to perform
aone-dimensional sort on a group of objects using the transfer
ball grid;

FIG. 11 is a first diagram showing the group of objects
being sorted in a one-dimensional sort in an unconstrained
grid environment;

FIG. 12 is a second diagram showing the group of objects
being sorted in a one-dimensional sort in an unconstrained
grid environment;

FIG. 13 is a flowchart showing processing used to perform
aone-dimensional sort on a group of objects using the transfer
ball grid in a constrained grid environment;

FIG. 14 is a flowchart showing processing used to swap
two objects using the transfer ball grid;

US 9,205,996 B2

3

FIG. 15 is a diagram showing the group of objects being
sorted in a one-dimensional sort in a constrained grid envi-
ronment;

FIG. 16 is a flowchart showing processing used to perform
a two-dimensional sort on a group of objects using the trans-
fer ball grid;

FIG. 17 is a flowchart showing processing used to spread
objects apart in order to perform the two-dimensional sort;

FIG. 18 is a flowchart showing processing used to move
objects to correct rows in the two-dimensional sort;

FIG. 19 is a flowchart showing processing used to group
objects in the two-dimensional sort;

FIG. 20 is a flowchart showing processing used to pack
rows of objects in the two-dimensional sort;

FIG. 21 is a first diagram showing the group of objects
being spread out and then moved to correct rows; and

FIG. 22 is a second diagram showing the group of objects
being grouped and packed to complete the two-dimensional
sort.

DETAILED DESCRIPTION

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor

10

20

30

40

45

4

system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present disclosure are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the disclosure. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of

US 9,205,996 B2

5

manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The following detailed description will generally follow
the summary of the disclosure, as set forth above, further
explaining and expanding the definitions of the various
aspects and embodiments of the disclosure as necessary.

The following detailed description will generally follow
the summary of the invention, as set forth above, further
explaining and expanding the definitions of the various
aspects and embodiments of the invention as necessary. To
this end, this detailed description first sets forth a computing
environment in FIG. 1 that is suitable to implement the soft-
ware and/or hardware techniques associated with the inven-
tion. A networked environment is illustrated in FIG. 2 as an
extension of the basic computing environment, to emphasize
that modern computing techniques can be performed across
multiple discrete devices.

FIG. 1 illustrates information handling system 100, which
is a simplified example of a computer system capable of
performing the computing operations described herein. Infor-
mation handling system 100 includes one or more processors
110 coupled to processor interface bus 112. Processor inter-
face bus 112 connects processors 110 to Northbridge 115,
which is also known as the Memory Controller Hub (MCH).
Northbridge 115 connects to system memory 120 and pro-
vides a means for processor(s) 110 to access the system
memory. Graphics controller 125 also connects to North-
bridge 115. In one embodiment, PCI Express bus 118 con-
nects Northbridge 115 to graphics controller 125. Graphics
controller 125 connects to display device 130, such as a
computer monitor.

Northbridge 115 and Southbridge 135 connect to each
other using bus 119. In one embodiment, the bus is a Direct
Media Interface (DMI) bus that transfers data at high speeds
in each direction between Northbridge 115 and Southbridge
135. In another embodiment, a Peripheral Component Inter-
connect (PCI) bus connects the Northbridge and the South-
bridge. Southbridge 135, also known as the /O Controller
Hub (ICH) is a chip that generally implements capabilities
that operate at slower speeds than the capabilities provided by
the Northbridge. Southbridge 135 typically provides various
busses used to connect various components. These busses
include, for example, PCI and PCI Express busses, an ISA
bus, a System Management Bus (SMBus or SMB), and/or a
Low Pin Count (LPC) bus. The LPC bus often connects
low-bandwidth devices, such as boot ROM 196 and “legacy”
1/0 devices (using a “super /O™ chip). The “legacy” 1/O
devices (198) can include, for example, serial and parallel
ports, keyboard, mouse, and/or a floppy disk controller. The
LPC bus also connects Southbridge 135 to Trusted Platform
Module (TPM) 195. Other components often included in
Southbridge 135 include a Direct Memory Access (DMA)
controller, a Programmable Interrupt Controller (PIC), and a
storage device controller, which connects Southbridge 135 to
nonvolatile storage device 185, such as a hard disk drive,
using bus 184.

10

15

20

25

30

35

40

45

50

55

60

65

6

ExpressCard 155 is a slot that connects hot-pluggable
devices to the information handling system. ExpressCard 155
supports both PCI Express and USB connectivity as it con-
nects to Southbridge 135 using both the Universal Serial Bus
(USB) the PCI Express bus. Southbridge 135 includes USB
Controller 140 that provides USB connectivity to devices that
connect to the USB. These devices include webcam (camera)
150, infrared (IR) receiver 148, keyboard and trackpad 144,
and Bluetooth device 146, which provides for wireless per-
sonal area networks (PANs). USB Controller 140 also pro-
vides USB connectivity to other miscellaneous USB con-
nected devices 142, such as a mouse, removable nonvolatile
storage device 145, modems, network cards, ISDN connec-
tors, fax, printers, USB hubs, and many other types of USB
connected devices. While removable nonvolatile storage
device 145 is shown as a USB-connected device, removable
nonvolatile storage device 145 could be connected using a
different interface, such as a Firewire interface, etcetera.

Wireless Local Area Network (LAN) device 175 connects
to Southbridge 135 via the PCI or PCI Express bus 172. LAN
device 175 typically implements one of the IEEE 0.802.11
standards of over-the-air modulation techniques that all use
the same protocol to wireless communicate between infor-
mation handling system 100 and another computer system or
device. Optical storage device 190 connects to Southbridge
135 using Serial ATA (SATA) bus 188. Serial ATA adapters
and devices communicate over a high-speed serial link. The
Serial ATA bus also connects Southbridge 135 to other forms
of storage devices, such as hard disk drives. Audio circuitry
160, such as a sound card, connects to Southbridge 135 via
bus 158. Audio circuitry 160 also provides functionality such
as audio line-in and optical digital audio in port 162, optical
digital output and headphone jack 164, internal speakers 166,
and internal microphone 168. Ethernet controller 170 con-
nects to Southbridge 135 using a bus, such as the PCI or PCI
Express bus. Ethernet controller 170 connects information
handling system 100 to a computer network, such as a L.ocal
Area Network (LAN), the Internet, and other public and
private computer networks.

While FIG. 1 shows one information handling system, an
information handling system may take many forms. For
example, an information handling system may take the form
of'a desktop, server, portable, laptop, notebook, or other form
factor computer or data processing system. In addition, an
information handling system may take other form factors
such as a personal digital assistant (PDA), a gaming device,
ATM machine, a portable telephone device, acommunication
device or other devices that include a processor and memory.

The Trusted Platform Module (TPM 195) shown in FIG. 1
and described herein to provide security functions is but one
example of a hardware security module (HSM). Therefore,
the TPM described and claimed herein includes any type of
HSM including, but not limited to, hardware security devices
that conform to the Trusted Computing Groups (TCG) stan-
dard, and entitled “Trusted Platform Module (TPM) Specifi-
cation Version 1.2 The TPM is a hardware security sub-
system that may be incorporated into any number of
information handling systems, such as those outlined in FIG.
2.

FIG. 2 provides an extension of the information handling
system environment shown in FIG. 1 to illustrate that the
methods described herein can be performed on a wide variety
of information handling systems that operate in a networked
environment. Types of information handling systems range
from small handheld devices, such as handheld computer/
mobile telephone 210 to large mainframe systems, such as
mainframe computer 270. Examples of handheld computer

US 9,205,996 B2

7

210 include personal digital assistants (PDAs), personal
entertainment devices, such as MP3 players, portable televi-
sions, and compact disc players. Other examples of informa-
tion handling systems include pen, or tablet, computer 220,
laptop, or notebook, computer 230, workstation 240, personal
computer system 250, and server 260. Other types of infor-
mation handling systems that are not individually shown in
FIG. 2 are represented by information handling system 280.
As shown, the various information handling systems can be
networked together using computer network 200. Types of
computer network that can be used to interconnect the various
information handling systems include Local Area Networks
(LANs), Wireless Local Area Networks (WLANS), the Inter-
net, the Public Switched Telephone Network (PSTN), other
wireless networks, and any other network topology that can
be used to interconnect the information handling systems.
Many of the information handling systems include nonvola-
tile data stores, such as hard drives and/or nonvolatile
memory. Some of the information handling systems shown in
FIG. 2 depicts separate nonvolatile data stores (server 260
utilizes nonvolatile data store 265, mainframe computer 270
utilizes nonvolatile data store 275, and information handling
system 280 utilizes nonvolatile data store 285). The nonvola-
tile data store can be a component that is external to the
various information handling systems or can be internal to
one of the information handling systems. In addition, remov-
able nonvolatile storage device 145 can be shared among two
or more information handling systems using various tech-
niques, such as connecting the removable nonvolatile storage
device 145 to a USB port or other connector of the informa-
tion handling systems.

FIGS. 3-9 depict an approach that can be executed on an
information handling system and computer network as shown
in FIGS. 1-2. Objects need to be moved across surfaces in a
wide variety of environments. The approach described herein
automates this process and makes movement of objects, such
as large pallets, containers, and crates, safer and more effi-
cient. This approach is scalable to work with small area move-
ments to large area movements. It is also scalable with respect
to the size of the objects that are being moved. In this manner,
very small objects, such as electronic components can be
moved by this approach, as well as large objects like shipping
containers. This approach can be incorporated into an auto-
matic or automated warehouse system. However, this
approach is not limited to such applications as it could be used
in a variety of environments such as shipyards, inside of
moving trucks, and other environments where objects need to
be moved across a surface.

A surface is provided which is covered with a large number
of vertically-adjustable low friction transfer modules. The
vertically-adjustable low friction transfer modules can be a
transfer ball unit with a freely spinning ball on top of the unit
capable of supporting weight, a set of protruding bearings at
the top of the module, a set of rounded buttons that can spin,
or any low friction surface upon which an object may slide
when slanted at an incline. Each vertically-adjustable low
friction transfer module is in a housing that is capable of being
raised or lowered by computer control (e.g., controlled by an
information handling system as shown in FIG. 1). The trans-
fer modules are sized and arranged in a grid so that an object
being moved will rest on a relatively large number of transfer
modules. In order to move an object, the transfer modules
under the object are raised a varying amount to create an
inclined plane with the downward slope in the desired hori-
zontal direction of travel across the surface. The slope is
increased gradually until the object starts to roll “down hill”
in the desired horizontal direction. As the object rolls over

20

30

40

45

55

8

new transfer modules, they are raised to maintain the inclined
plane, and at the same time the transfer modules no longer
supporting the object are returned to the default lowered
position (e.g., level with or below the surface, etc.). In this
manner, an object can be moved smoothly across the surface
as if the entire surface was inclined. This approach also limits
the potential damage in case of a system failure. Long dis-
tance movement can be controlled by a synchronized coordi-
nation of raising and lowering of transfer modules to provide
controlled movement stops and changes in direction.

FIG. 3 is a diagram showing a transfer ball grid capable of
moving an object in many different directions. FIG. 3 pro-
vides a top view of surface 300, such as might be found on in
a warehouse or other environment where objects are moved
across the surface. Transfer ball grid 310 is a grid of many
separate vertically-adjustable low friction transfer modules
(325) arranged in a grid pattern. Any grid pattern, such as a
rectangular pattern, an offset pattern, etc. can be used to
implement the grid with the particular pattern and spacing of
the vertically-adjustable low friction transfer modules, in one
embodiment, based on the types of objects being moved
across the surface (e.g., small objects, large objects, etc.). The
transfer modules are raised and lowered as described in fur-
ther detail herein in order to move object 320 horizontally
across surface 300. Sensors 330 detect the position of object
320 to identity the particular transfer modules that should be
raised and lowered to move the object. In one embodiment,
object 320 can be moved in virtually any horizontal direction
along surface 300 based on the movement (raising and low-
ering) of the transfer modules underneath and proximate to
object 320. The arrows emanating at object 320 depict pos-
sible horizontal movement paths of object 320 along surface
300.

FIG. 4A is a diagram showing two transfer ball housings
that would provide two of the transfer balls in the transfer ball
grid shown in FIG. 3. Transfer module 325 is a vertically-
adjustable low friction module that, as shown is capable of
moving up and down within a housing. In one embodiment,
vertical height adjustment 420 is performed by a linear actua-
tor. In another embodiment, the vertical height adjustment is
performed by servomotors and linkages. In another embodi-
ment, adjusting the heights of the vertically-adjustable low
friction transfer modules is performed using a hydraulic lift
assembly included in each transfer module. Sensors 330 are
included with the transfer modules to sense an object ontop of
the transfer modules. In one embodiment, sensors 330 are
light sensitive capable of sensing light shining in the aperture
of the housing. When the light is blocked by an object, the
sensor is triggered. In one embodiment, the inactive position
of the vertically-adjustable low friction transfer modules is
below the surface so that vehicles and other forms of transport
can also take place over the surface without the low friction
qualities of the transfer modules impeding such transport
while the transfer modules are inactive.

FIG. 4B is a diagram showing activation of three transfer
ball housings within the transfer ball grid shown in FIG. 3
activated to move the object in a particular direction. The
three vertically-adjustable low friction transfer modules are
labeled 451, 452, and 453 and are used to depict the inclined
plane produced by varying the height of the various transfer
modules. Height adjustors 420 corresponding to the various
transfer modules are raised in order for the back side of object
320 to be raised to a height greater than the front side of object
320, with the desired horizontal direction (movement) of the
object being towards the front side of the object. While only

US 9,205,996 B2

9

three transfer modules are shown, many sets of transfer mod-
ules would actually be engaged and raised to different heights
to create the inclined plane.

Transfer modules 451, 452, and 453 would be raised to
different heights creating an inclined plane as shown. As
object 320 moves in the horizontal direction shown, addi-
tional transfer modules in front of the object would be raised
to receive the object and transfer modules 451, 452, and 453
would be raised to different heights to maintain the inclined
plane at a position further along the horizontal path of the
object. When a transfer module is no longer underneath the
object (e.g., when object passes completely past transfer
module 451, etc.), the transfer module is lowered to its initial,
disengaged position as previously shown in FIG. 4A. In one
embodiment, low friction aspect 400 at the top surface of the
vertically-adjustable low friction transfer modules is pro-
vided by a transfer ball unit that rolls in any direction. In
another embodiment, a set of protruding bearings (e.g., ball
bearings, etc.) provides low friction aspect 400 at the top
surface of the transfer modules. In another embodiment, a set
of'rounded buttons provides low friction aspect 400 at the top
surface of the transfer modules. As described in further detail
herein, front side transfer modules can be raised in order to
provide a controlled stop to the horizontal movement of
object 320.

FIG. 5 is a flowchart showing steps performed to use the
transfer ball grid to move an object. Processing commences at
500 whereupon, at step 510, an operator of the process (e.g.,
another process, a human operator, etc.) selects an object to be
moved (e.g., an object on a surface of a warehouse, etc.). At
step 520, the operator selects a horizontal direction in which
the object is to be moved. In one embodiment, the horizontal
direction is any direction (e.g., north, south, east, west, north-
east, northwest, southeast, southwest, any compass degree
setting, etc.). In addition, at step 520 the destination of the
movement is selected (e.g., one hundred feet south, etc.). A
series of movement directions and destinations can be pro-
vided to traverse a surface (e.g., to avoid other objects, etc.).

At step 525, the process selects the vertically-adjustable
low friction transfer modules that are underneath the object.
At predefined process 530, a signal is sent to the selected
transfer modules to initiate movement of the object (see FIG.
9 and corresponding text for “initiate” processing details).
The initiation of movement will raise the object onto the
transfer modules underneath the object by raising the selected
transfer modules and thereby raising the object. Movement of
the object is accomplished by the process identifying one or
more back-side sets of transfer modules from the transfer
modules underneath the object as well as one or more front-
side sets of transfer modules from the transfer modules under-
neath the object. The back-side sets of transfer modules are
toward the back side of the object that is opposite (away from)
the horizontal direction selected by the operator, and the
front-side sets of transfer modules are toward the front of the
object that is towards the horizontal direction. As used herein,
the “front side” of the object refers to the side of the object
facing the direction in which the object is being moved and
does not refer to the actual face of the object, and likewise, the
“back side” of the object refers to the side of the object facing
away from the direction in which the object is being moved
and does not refer to the actual rear of the object.

At step 540, processing selects the transfer modules that
are located proximate (e.g., adjacent to, etc.) the object in the
direction of the selected movement path (e.g., the next trans-
fer modules over which the object will travel in the selected
direction). At predefined process 550, a signal is sent to the
selected transfer modules proximate to the object instructing

25

30

40

45

10

the selected transfer modules to prepare to receive the object
(e.g., by raising from a disengaged position to a low vertical
position that allows the object to move over the selected
transfer modules, etc.). See FIG. 9 and corresponding text for
processing details regarding “prepare to receive” processing
of the transfer modules.

At predefined process 560, movement is initialized in the
direction selected by the operator (see FIG. 6 and correspond-
ing text for processing details). In one embodiment, the trans-
fer modules under the back side of the object are raised at the
same time that transfer modules under the front side of the
object are lowered in order to gently create an inclined plane
upon which the object will move horizontally across the
surface. In another embodiment, the identified back-side sets
of transfer modules are raised to a first set of one or more
vertical heights, and the identified front-side sets of transfer
modules are raised (from the disengaged position) to a second
set of one or more vertical heights, with the average ofthe first
set of vertical heights being higher than the average of the
second set of vertical heights. When viewed from the side, the
object will appear to be on an incline plane and will move in
the selected horizontal direction due to gravity and the low
friction provided by the top surface of the transfer modules.

After movement has been initialized, movement in the
selected horizontal direction is continued using the process-
ing shown in predefined process 570 (see FIG. 7 and corre-
sponding text for processing details). While the object is
moving, processing repeatedly checks as to whether the
object is at a position just before the selected designation
(decision 575). Decision 575 repeatedly loops back to pre-
defined process 570 until the object is at the destination where
the controlled stop should commence. When the object
reaches the destination where the controlled stop should com-
mence, which may be before the actual destination chosen by
the operator based upon the distance needed to perform the
controlled stop, decision 575 branches to the “yes” branch to
stop the object. At predefined process 570, the object comes to
a controlled stop (see FIG. 8 and corresponding text for pro-
cessing details).

A decision is made as to whether the operator is requesting
to change the direction and/or the destination of the object
(decision 580). If the operator is requesting to change the
direction and/or the destination of the object, then decision
580 branches to the “yes” branch which loops back to receive
the next movement direction and destination. This looping
continues until the object is at the final destination, at which
point decision 580 branches to the “no” branch and process-
ing ends at 595.

FIG. 6 is a flowchart showing steps performed to initiate
movement of an object using the transfer ball grid. Movement
initialization processing commences at 600 whereupon, at
step 610, an increment height is retrieved for a desired, or
predefined, movement speed. Greater increment heights cre-
ate a steeper inclined plane and faster horizontal movement
speed, while lesser incremental heights create a shallower
inclined plane and slower horizontal movement speed. At step
615, a lower height value is initialized to be an initial height
value and, at step 620, the raise height value is also initialized
to be the initial height value. In one embodiment, the initial
height value is a mid-point value between the lowest height of
the inclined plane that is being created and the highest height
of'the inclined plane that is being created.

At step 625, the number of sets (e.g., lines, etc.) of transfer
modules underneath the unit are identified from front to back
with the front being the direction of the horizontal movement.
At step 630, the midpoint set is determined by dividing the
total number of sets of transfer modules by two. Two parallel

US 9,205,996 B2

11

processes commence (640 and 670) with process 640 oper-
ating to lower the front side transfer modules from the initial
height and process 670 operating to raise the back side units
from the initial height.

Process 640 lowers the front side transfer modules from the
midpoint to the front of the object. At step 645, the first set
(e.g., line) of transfer modules are selected nearest the mid-
point. At step 650, a lowered height setting is calculated for
the selected set of front side transfer modules by subtracting
the current lower height by the incremental height. At pre-
defined process 655, processing signals each of the selected
transfer modules to lower their height to the calculated lower
height value (see FIG. 9 and corresponding text for process-
ing details used to set a transfer module to a numeric height
value). A decision is made as to whether there are more sets of
front side transfer modules to lower (decision 660). If there
are more front side transfer modules to lower (e.g., the front-
most set of transfer modules has not been reached), then
decision 660 branches to the “yes” branch which loops back
to select the next set (e.g., line) of front side transfer modules
and these selected transfer modules are set to an even lower
height as the lower height value is further decreased by the
incremental height value. This looping and repeated lowering
of further sets of front side transfer modules continues until
there are no more front side transfer modules to process, at
which point decision 660 branches to the “no” branch exiting
process 640.

Process 670 raises the back side transfer modules from the
midpoint to the back of the object. As previously described,
process 670 takes place concurrently (in parallel) with pro-
cess 640 which is used to lower front side transfer modules. At
step 675, the first set (e.g., line) of transfer modules are
selected nearest the midpoint. At step 680, a raised height
setting is calculated for the selected set of back side transfer
modules by adding the current raised height by the incremen-
tal height. At predefined process 685, processing signals each
of the selected transfer modules to raise their height to the
calculated raised height value (see FIG. 9 and corresponding
text for processing details used to set a transfer module to a
numeric height value). A decision is made as to whether there
are more sets of back side transfer modules to raise (decision
690). If there are more back side transfer modules to raise
(e.g., the back-most set of transfer modules has not been
reached), then decision 690 branches to the “yes” branch
which loops back to select the next set (e.g., line) of back side
transfer modules and these selected transfer modules are set
to an even higher height as the raised height value is further
increased by the incremental height value. This looping and
repeated raising of further sets of back side transfer modules
continues until there are no more back side transfer modules
to process, at which point decision 690 branches to the “no”
branch exiting process 670.

After the front side transfer modules have been lowered to
their initial values and the back side transfer modules have
been raised to their initial values, as described above, an
inclined plane will have been created upon which the object
moves in the horizontal direction selected by the operator.
Processing then returns to the calling routine (see FIG. 5) at
695.

FIG. 7 is a flowchart showing steps performed while mov-
ing an object using the transfer ball grid. Processing com-
mences at 700 whereupon, at step 710, the incremental height
that is used for the desired speed is retrieved. In one embodi-
ment, the incremental height is selected by the operator when
determining a horizontal speed at which the object is to travel,
while in another embodiment, the incremental height is a
fixed, predetermined, height so that the objects travel at

10

20

25

30

35

40

45

50

55

60

65

12

roughly the same speeds across the surface. At step 720, the
first set (e.g., lines) of transfer modules are selected starting
from the back side of the object with the front side of the
object being towards the direction that the object is moving
across the surface.

Atpredefined process 730, the process sends a signal to the
selected transfer modules to increase the current height by the
incremental height value (see FIG. 9 and corresponding text
for “INCREASE” processing details). A decision is made as
to whether there are more transfer modules currently under-
neath the object that is being moved (decision 740). If there
are more transfer modules underneath the object, then deci-
sion 740 branches to the “yes” branch which loops back to
select and increment the next set (e.g., line) of transfer mod-
ules with the next set being the next set towards the front of the
object when compared to the previously selected set of trans-
fer modules. This looping continues until there are no more
transfer modules underneath the object, at which point deci-
sion 740 branches to the “no” branch for further movement
processing.

At step 750, the transfer modules that are currently located
proximate (e.g., adjacent to) the object and in front of the
object are selected (e.g., the transfer modules over which the
object will travel next in its selected movement direction). At
predefined process 760, the transfer modules selected at step
750 are signaled to prepare to receive the object by raising to
a lowest usable level of the inclined plane (see FIG. 9 and
corresponding text for “prepare to receive” processing
details). As the object moves in the desired horizontal direc-
tion, transfer modules at the back of the object which will
have been raised to the highest level of the inclined plane, will
eventually no longer be underneath the object as the object
fully passes over these transfer modules. At step 770, these
transfer modules, now located behind the object and no
longer underneath the object, are selected. At predefined pro-
cess 780, the transfer modules selected at step 770 are sig-
naled to fully retract to a disengaged position (see FIG. 9 and
corresponding text for “fully retract” processing details). Pro-
cessing then returns to the calling routine (see FIG. 5) at 795.

FIG. 8 is a flowchart showing steps performed during a
controlled stop of the object being moved using the transfer
ball grid. Controlled stoppage processing commences at 800
whereupon, at step 810, an increment height is retrieved for a
desired, or predefined, stoppage speed. Greater increment
heights create a quicker stopping time, while lesser incremen-
tal heights create slower stopping time.

At step 815, the number of sets (e.g., lines, etc.) of transfer
modules underneath the unit are identified from front to back
with the front being the direction of the horizontal movement.
At step 820, the midpoint set is determined by dividing the
total number of sets of transfer modules by two. Two parallel
processes commence (825 and 850) with process 825 oper-
ating to raise the front side transfer modules from their current
heights and process 850 operating to lower the back side units
from their current heights.

Process 825 raises the front side transfer modules from the
midpoint to the front of the object. At step 830, the first set
(e.g., line) of transfer modules are selected nearest the mid-
point. At predefined process 835, processing signals each of
the selected transfer modules to raise their height by the
incremental height value (see FIG. 9 and corresponding text
for “INCREASE” processing details). A decision is made as
to whether there are more sets of front side transfer modules
to raise (decision 840). If there are more front side transfer
modules to raise (e.g., the front-most set of transfer modules
has not been reached), then decision 840 branches to the
“yes” branch which loops back to select the next set (e.g.,

US 9,205,996 B2

13

line) of front side transfer modules and these selected transfer
modules are incrementally raised by the incremental height
value. This looping and repeated raising of further sets of
front side transfer modules continues until there are no more
front side transfer modules to process, at which point decision
840 branches to the “no” branch exiting process 825.

Process 850 lowers the back side transfer modules from the
midpoint to the back of the object. At step 855, the first set
(e.g., line) of transfer modules are selected nearest the mid-
point. At predefined process 860, processing signals each of
the selected transfer modules to lower their height by the
incremental height value (see FIG. 9 and corresponding text
for “DECREASE” processing details). A decision is made as
to whether there are more sets of back side transfer modules
to lower (decision 865). If there are more back side transfer
modules to lower (e.g., the back-most set of transfer modules
has not been reached), then decision 865 branches to the
“yes” branch which loops back to select the next set (e.g.,
line) of back side transfer modules and these selected transfer
modules are incrementally lowered by the incremental height
value. This looping and repeated lowering of further sets of
back side transfer modules continues until there are no more
back side transfer modules to process, at which point decision
865 branches to the “no” branch exiting process 850.

After processes 825 and 850 have executed to raise front
side transfer modules and lower back side transfer modules as
discussed above, at step 870, the height is calculated as being
the last selected (front-most) front side transfer module
height. At step 875, the process selects transfer modules in the
direction of the objects horizontal movement as the object is
likely still moving. At predefined process 880, the transfer
modules selected at step 875 are signaled to raise their level to
the height value shown in step 870 (see FIG. 9 and corre-
sponding text for processing details used to raise transfer
modules to a particular height).

A decision is made as to whether the object has stopped
moving (decision 885). If the object has not stopped moving,
then decision 885 branches to the “no” branch which loops
back to further raise the front side transfer modules and fur-
ther lower the back side transfer modules as described above.
This looping continues until the object has stopped moving, at
which point decision 885 branches to the “no” branch. At
predefined process 890, all of the transfer modules under-
neath and proximate (e.g., adjacent to) the object are signaled
to fully retract which lowers the object to the surface (see FIG.
9 and corresponding text for “fully retract” processing
details). Processing then returns to the calling routine (see
FIG. 5) at 895.

FIG. 9 is a flowchart showing processing performed at each
transfer ball unit to process commands received at the unit. In
one embodiment, each transfer module includes a processor
to control operation of the particular transfer module as
directed by the main controller (see FIG. 5 for main control
operations). Processing commences at 900 whereupon, at
step 910, transfer module grid configuration settings are
retrieved from grid settings memory area 920. At step 925, the
transfer module waits for the next request to arrive at the
module (e.g., a signal received from one of the processes
shown in FIGS. 5-8, etc.). A decision is made as to whether a
request has been received (decision 930). Decision 930
branches to the “no” branch and continues looping back to
step 925 until a request is received. When a request is
received, then decision 930 branches to the “yes” branch
whereupon, at step 935, the process retrieves the transfer
module’s current height from memory area 940.

A decision is made based on the type of request received by
the transfer module (decision 950, such as a select-case

25

35

40

45

55

65

14

instruction). If an “initiate” request is received, then decision
950 branches to the “initiate” branch whereupon, at step 960,
the transfer module raises its level to a uniform set for all of
the transfer modules underneath the object. If a “prepare to
receive” request is received, then decision 950 branches to the
“prepare to receive” branch whereupon, at step 965, the trans-
fer module raises its level to a lowest usable level which is the
lowest height of the incline plane used to move the object
(e.g., a half inch, etc.). If a numeric height value (e.g., 5
inches, etc.) request is received, then decision 950 branches to
the “numeric height value” branch whereupon, at step 970,
the transfer module raises its level the height indicated in the
request (e.g., 5 inches, etc.). If an “INCREASE” or
“DECREASE” request is received, then decision 950
branches to the “INCREASE or DECREASE” branch where-
upon, at step 975, the transfer module raises or lowers its
current height by the increase or decrease amount. Finally, if
a “fully retract” request is received, then decision 950
branches to the “fully retract” branch whereupon, at step 980,
the transfer module is fully lowered to a disengaged position
(e.g., level with or below the surface, etc.).

At step 990, the current height of the transfer module is
saved in memory area 940 based on the processing of the
request. Processing then loops back to step 925 to wait to
receive the next request from a control module (see, e.g.,
FIGS. 5-8, etc.).

FIG. 10 is a flowchart showing processing used to perform
aone-dimensional sort on a group of objects using the transfer
ball grid. Using the surface of vertically-adjustable low fric-
tion transfer modules controlled by the processors as shown
in the preceding drawings, groups of objects can be arranged,
such as in a sorted order. Objects that are out-of-order can be
moved and arranged in a sorted order. A one-dimensional sort
of'objects, such objects in a single line formation, is shown in
FIG. 10. Processing commences at 1000 whereupon, at step
1005, the process receives a request to sort a group of objects
that resides on the surface into a sorted single line formation.
At step 1010, the process identifies the number of objects in
the row to sort. In one embodiment, the number of objects are
identified using the sensors, previously described, included in
the floor surface. At step 1015, the process identifies the
available “empty” space on the floor surface that is proximate
to the line of objects that is being sorted. A decision is made
as to whether there is enough empty space on the floor for
each object to have its own row (decision 1020). If there is not
enough empty space on the floor for each object to have its
own row, then decision 1020 branches to the “no” branch
whereupon, at predefined process 1025, a process is per-
formed to sort the line of objects using a minimal amount of
space (see FIG. 13 and corresponding text for processing
details) and processing ends at 1030. On the other hand, if
there is enough empty space on the floor surface for each
object to have its own row, then decision 1020 branches to the
“yes” branch for further processing.

At step 1035, the process performs a virtual sort of the
objects in the row by an object sort value into a desired order.
The desired order of the objects is stored in memory area
1040. For example, objects being shipped may have a postal
code associated with each of the objects being shipped with
the user desiring to have the objects sorted in postal code
order so that they can be loaded onto a truck for shipment in
an order similar to how the objects will be delivered to their
respective destinations. At step 1045, the first object in the
row is selected (the first column of the row). At step 1050, the
desired order of the selected object is retrieved from memory
area 1040 and the desired order is stored in the variable
OBJ_POSITION. At step 1055, the new row for the selected

US 9,205,996 B2

15

object NEW_ROW) is set to the OBJ_POSITION. Using the
example shown in FIGS. 11 and 12, if the first object selected
is supposed to be the fourth object in the row, then the object
is moved to the fourth row. At predefined process 1060, the
transfer ball control routine is used to move the object at the
selected row and column (row=1, column=1) to the new row
(e.g., row 4, and the same column, e.g., column 1—see FIG.
5 and corresponding text for processing details regarding the
transfer ball control routine). A decision is made as to whether
there are more objects in the row to move (decision 1065). If
there are more objects in the row to move, then decision 1065
branches to the “yes” branch which loops back to select the
next object in the row (e.g., object 2 which is in column 2 of
row 1) and the process moves the newly selected object to the
row corresponding to the newly selected objects sort position.
Using the example from FIGS. 11 and 12, the second object
has a sort position of five, so the second object would be
moved to the fifth row, second column. This looping contin-
ues until all of the objects have been selected and moved into
their unique row assignments as shown in Step 2 of FIG. 11.
Note that the process loops to the next object and commences
appropriate movement without regard as to whether the pre-
vious object’s move has been completed since all of the
objects can be moving simultaneously across the floor sur-
face. Once all of the objects have been moved to their correct
row, then decision 1065 branches to the “no” branch to start
moving the objects to their correct column position. At step
1070, the first object is selected (e.g., object shown in FIG. 11,
Step 2). At predefined process 1075, the selected object is
moved to the column corresponding to its sort position. As
shown in FIG. 12, Step 3, Object is moved to the fourth
column position. A decision is made as to whether there are
additional objects to select and move (decision 1078). If there
are additional objects to select and move, then decision 1078
branches to the “yes” branch which loops back to select and
move the next object. This looping continues until all of the
objects have been selected and moved to the appropriate
columns, such as shown in the example provided in FIG. 2,
Step 3. When all of the objects have been selected and moved
to the appropriate columns, then decision 1078 branches to
the “no” branch for further processing. Note again that since
each object was previously moved to its own row, the objects
can be moved simultaneously as no collisions will occur.
Next, the objects are moved from their temporary rows back
to a common row where they will now be in sorted order. At
step 1080, the first object is selected and, at predefined pro-
cess 1085, the selected object is moved to the first (common)
row. A decision is made as to whether there are additional
objects to move to the common row (decision 1090). If there
are additional objects to move to the common row, then
decision 1090 branches to the “yes” branch which loops back
to select and move the next object to the common row. This
looping continues until all of the objects are on the common
row (e.g., row one) and are now in sorted order. FIG. 12, Step
4 shows an example of objects being moved to the common
row. Again, since each of the objects is in its own column, the
objects can be moved simultaneously to the common row
using the transfer ball grid and no collisions will occur. Pro-
cessing then ends at 1095.

FIG. 11 is a first diagram showing the group of objects
being sorted in a one-dimensional sort in an unconstrained
grid environment. A flowchart showing the logic used to
move the objects as shown in FIGS. 11 and 12 was previously
presented in FIG. 10. Step 1 (1110) shows the initial arrange-
ment of the objects on the surface of vertically-adjustable low
friction transter modules controlled by one or more proces-
sors. As shown, the objects are out of order and are currently

10

15

20

25

30

35

40

45

50

55

60

65

16

in D-E-B-A-C order where the desired order is A-B-C-D-E.
Step 2 (1020) shows the objects being moved to their own row
based on the object’s relative sort position. Here, Object A is
not moved as it already resides in the first row, Object B is
moved to the second row, Object C is moved to the third row,
Object D is moved to the fourth row, and Object E is moved to
the fifth row.

FIG. 12 is a second diagram showing the group of objects
being sorted in a one-dimensional sort in an unconstrained
grid environment. Step 3 (1130) shows Object A being moved
to the first column, Object B being moved to the second
column, Object C being moved to the third column, Object D
being moved to the fourth column, and Object E being moved
to the fifth column. In the final step, Step 4 (1140), the objects
are moved back to a common row where they now appear in
sorted order. Object A is already in the first row so it is not
moved, Object B is moved down one row from row two to row
one, Object C is moved down two rows from row three to row
one, Object D is moved down three rows from row four to row
one, and Object E is moved down four rows from row five to
row one.

FIG. 13 is a flowchart showing processing used to perform
aone-dimensional sort on a group of objects using the transfer
ball grid in a constrained grid environment. Processing com-
mences at 1300 whereupon, at step 1305, variables are ini-
tialized with Length being set to the number of objects that are
being sorted, Swaps being set to FALSE to indicate that no
swaps have taken place, and Start column being set to one. An
example of a row of objects that is being sorted using a
minimal amount of space is shown in FIG. 15, element 1500.
In the embodiment shown, a minimal amount of space used to
swap objects is a row of empty space that is adjacent to the
row of objects being sorted. In the process shown in steps
1310 through 1395, adjacent objects are repeatedly compared
to one another based on the sort position desired for the
objects. Ifthe objects are out of order, the objects are swapped
by moving the object with the lower sort position object to the
right of the object with the higher sort position. Elements
1500 through 1580 provide examples of the swaps that occur
to order the objects in the correct sort positions.

Returning to FIG. 13, at step 1310 a first variable (i) is set
to the start column and, at step 1315, a second variable (j) is
set to the adjacent column (i+1). A decision is made as to
whether the objects residing at the columns (i and j) are in an
incorrect order (decision 1320). If the first object (the object
residing at column (1)) has a sort position value that is greater
than the adjacent object (e.g., the object to the first object’s
right side), then the objects need to be swapped in order to be
in the correct order. If the objects need to be swapped, then
decision 1320 branches to the “yes” branch whereupon, at
predefined process 1325 the two objects are physically
swapped on the surface using the vertically-adjustable low
friction transfer modules that are controlled by the processors
(see FIG. 14 and corresponding text for processing details
regarding the swapping of objects). In addition, at step 1330,
the Swaps flag is set to TRUE to indicate that objects in the
row have been swapped. On the other hand, if the two objects
do not need to be swapped because the object on the left is
lower than or equal to the object to its right, then decision
1320 branches to the “no” branch bypassing predefined pro-
cess 1325 and step 1330.

At step 1335, the position of the first object used in the
comparison is incremented by two. If the start position was
one, then the incremented first position is three, then five, then
seven, and so on. In one embodiment, the start position oscil-
lates between the first position and the second position so that
the objects being compared change on a regular basis. When

US 9,205,996 B2

17

the start position is two, then the incremented first position is
four, then six, then eight, and so on. A decision is made as to
whether the incremented first position is at or past the last
object in the row that is being sorted (decision 1340). If the
incremented first position is not yet at or past the last object in
the row that is being sorted, then decision 1340 branches to
the “no” branch whereupon processing loops back to com-
pare the sort position of the next pair of objects and swap the
objects if needed as described above. This looping continues
until the incremented first position is at or past the last object
in the row that is being sorted, at which point decision 1340
branches to the “yes” branch.

A decision is made as to whether the Swaps flag is still set
to FALSE indicating that none of the objects needed to be
swapped and that the row is now in the correct (sorted) order
(decision 1345). If the Swaps flag is not FALSE, indicating
that one or more pairs of objects were swapped, then decision
1345 branches to the “no” branch to continue the sorting
process. At step 1350, the Swaps flag is reset to FALSE to
initialize the next run. A decision is made as to whether the
Start column used to select pairs of objects is currently set to
column one (decision 1355). If the Start column is currently
set to column one, then decision 1355 branches to the “yes”
branch whereupon, at step 1360, the Start column is set to
column two. Conversely, if the Start column is not currently
set to column one (is instead set to column two), then decision
1355 branches to the “no” branch whereupon, at step 1365 the
Start column is set to column one. In this manner, when the
Start column is set to column one, objects in the first and
second columns are compared and swapped if needed, then
objects in the third and fourth columns are compared and
swapped if needed, and so on. Likewise, when the Start col-
umn is set to column two, objects in the second and third
columns are compared and swapped if needed, then objects in
the third and fourth columns are compared and swapped if
needed, and so on. At step 1370, the process waits for the
physical movement of objects being swapped on the surface
to complete before looping back to perform the next iteration
of comparisons and potential swaps. Note that during an
iteration, multiple pairs of objects can be in the process of
being swapped with such objects moving simultaneously as a
pair of objects being swapped will not collide with objects
positioned to the left or right of the pair.

Returning to decision 1345, if the objects in the row are
processed without any swaps being performed (Swaps flag
still set to FALSE), then the objects are in the correct sorted
order and decision 1345 branches to the “yes” branch where-
upon processing ends at 1395.

FIG. 14 is a flowchart showing processing used to swap
two objects using the transfer ball grid. The swap objects
routine is provided parameters identifying the two objects (i
and j) to be swapped. Processing commences at 1400 where-
upon, at predefined process 1410, one of the objects (e.g.,
object(j)) is moved to an adjacent empty position, such as UP
or DOWN when swapping objects arranged horizontally (see
FIG. 5 and corresponding text for processing details of the
Transfer Ball Control routine). At step 1420, the process waits
for the object movement to complete. Once the object has
been moved to the adjacent empty spot, then the object on the
right (object(j) having been moved UP or DOWN to an adja-
cent empty row) is moved LEFT (predefined process 1430)
and the object on the left (object(i)) is moved RIGHT (pre-
defined process 1440). At step 1450, the process waits for
movement of the two objects complete. At predefined process
1460, the object that was initially moved to the adjacent
empty space (e.g., object(j)) is moved back to the same row as
the object with which it was compared and swapped (e.g.,

30

40

45

18
object(i)). In the example shown, object(j) is moved DOWN
one position to be adjacent to object(i). At step 1470, the
process waits until the movement of object(j) to the position
adjacent to object(i) at which point the routine returns to the
calling routine (see, e.g., FIG. 13) at 1495.

FIG. 15 is a diagram showing the group of objects being
sorted in a one-dimensional sort in a constrained grid envi-
ronment, where there are just two rows available to perform
the sort

Arrangement 1500 shows the initial arrangement of
unsorted objects on the surface. The start column is indicated
as being the first column. The first pair of objects (columns
one and two) are in correct order and need not be swapped.
The second pair of objects (columns three and four) are not in
correct order and need to be swapped. The third pair of objects
(columns five and six) are in correct order and need not be
swapped, and the last pair of objects (columns seven and
eight) are not in correct order and need to be swapped. Swap-
ping details are shown in 1510 for swapping the pairs that
need to be swapped (the second and fourth pairs). From initial
arrangement 1500, the rightmost objects in the pairs that were
identified for swaps are moved to adjacent empty spots on the
transfer grid surface as shown in arrangement 1515. Arrange-
ment 1520 shows the rightmost objects of the pairs being
moved one position to the left and the leftmost objects being
moved one position to the right. Arrangement 1525 shows the
result of the swap with the second and fourth pairs of objects
now being arranged in the correct sorted order respective of
the other object in the pair.

Arrangement 1525 is then analyzed but with the starting
column now being the second column so that the first pair of
objects reside in the second and third columns, the second
pair in the fourth and fifth columns, and so on. Here, all of the
pairs (first, second, and third pair) are identified as needing
the respective paired objects swapped, the result of which is
shown in arrangement 1530. Arrangement 1530 is then ana-
lyzed with the starting column now being the first column so
that the first pair of objects reside in the first and second
columns and so on. Here, again, all pairs of objects are iden-
tified as needing to be swapped with the result shown in
arrangement 1540. Arrangement 1540 is analyzed with the
starting column being the second column and the analysis
identifying the second and third pairs as needing swaps result-
ing in arrangement 1550. Arrangement 1550 is analyzed with
the starting column being the first column and the analysis
identifying the second and third pairs as needing swaps result-
ing in arrangement 1560. Arrangement 1560 is analyzed with
the starting column being the second column and the analysis
identifying all pairs (first, second and third pairs) as needing
swaps resulting in arrangement 1570. Arrangement 1570 is
analyzed with the starting column being the first column and
the analysis identifying the second and fourth pairs as need-
ing swaps resulting in arrangement 1580. When arrangement
1580 is analyzed, no swaps are identified resulting in the
sorted position of each object in the horizontal arrangement
being achieved.

The one-dimensional sorting and arrangement of objects as
shown in FIGS. 10-15 is one example of how physical objects
can be sorted on the surface of vertically-adjustable low fric-
tion transfer modules controlled by the processors as shown
and described herein. Those of skill in the art will appreciate
that many different methodologies can be employed to sort
and arrange objects in a linear fashion with the methodology
often being selected based on the environment and applica-
tion, such as the size and number of objects routinely being
sorted and arranged.

US 9,205,996 B2

19

FIG. 16 is a flowchart showing processing used to perform
a two-dimensional sort on a group of objects using the trans-
fer ball grid. Processing commences at 1600 whereupon, at
step 1610, the process receives a request to sort a grid, or
matrix, of objects into the same matrix pattern. In the example
shown and described in FIGS. 16-22, a four-by-four matrix of
objects, such as might be loaded on a palette and loaded onto
a truck or train. Other applications using substantially larger
matrices of objects can utilize the techniques shown in FIGS.
16-22 as well as the linear sorting techniques shown and
described in FIGS. 10-15 to manage larger matrices of
objects. In addition, at step 1610, empty space adjacent to the
unsorted matrix is allocated. In one embodiment, four times
the column grid space (empty space) is allocated to sort the
four-by-four matrix and two times the row grid space (empty
space) is also allocated to sort the matrix. At predefined
process 1620, the objects in the matrix are physically spread
out across the allocated surface area (see FIG. 17 and corre-
sponding text for processing details). In addition, an example
is shown in FIG. 21 with arrangement 2110 showing the
objects spread out across the available surface area.

Atstep 1630, the current object matrix (memory area 1625)
is virtually sorted by a sort value (e.g., postal code, etc.) into
a sorted matrix of rows and columns which is stored in
memory area 1635. At predefined process 1640, the objects,
having been spread out across the available surface area, are
moved to their proper rows according to the sorted matrix
stored in memory area 1635 (see FIG. 18 and corresponding
text for processing details, in addition see FIG. 21, arrange-
ment 2120 showing the objects having been moved into their
proper rows). At predefined process 1650, the objects are
grouped together to prepare for sorting (see FIG. 19 and
corresponding text for processing details, in addition see FIG.
22, arrangement 2200 showing the objects grouped together
in their correct rows). The objects now reside on every other
row so that empty adjacent space is available to sort the
objects within each of the rows. The current Row is set to the
second row (with the first row being empty). At predefined
process 1670, a one-dimensional sort is performed on the
selected Row (row two, see FIG. 13 and corresponding text
for processing details). The current Row is incremented by
two to account for the empty row at step 1675. A decision is
made as to whether the current Row is still in the matrix of
objects being sorted (decision 1680). If the current Row is in
the matrix of objects being sorted, then decision 1680
branches to the “yes” branch which loops back to perform a
one dimensional sort of the current Row (e.g., Row four, etc.)
using predefined process 1670 and incrementing the current
Row by two. This looping continues until the incremented
Row is no longer in the matrix that is being sorted. The result
of the sorting of the various rows can be seen in FIG. 22,
arrangement 2210. When all of the rows have been sorted,
then decision 1680 branches to the “no” branch whereupon, at
predefined process 1690, the rows are packed into the same
space that where the unsorted matrix was found (see FIG. 20
and corresponding text for processing details, also see FIG.
22, arrangement 2220 for the resulting packed rows). Pro-
cessing then ends at 1695.

FIG. 17 is a flowchart showing processing used to spread
objects apart in order to perform the two-dimensional sort.
Processing commences at 1700 whereupon, at step 1710, the
Row is initialized to the last (highest) row of the original
matrix and the Column is initialized to the last (highest)
column of the original matrix. Starting with the outermost
objects allows these objects to be moved first without causing
any collisions with other objects. When interior objects in the
matrix are moved, their adjacent objects to the outside will

35

40

45

50

55

20

have already started moving across the surface, avoiding col-
lisions with the inner objects of the original matrix. At step
1720, the new row (NEW_ROW) for the selected object (ini-
tialized to be the object at the last column and at the last row)
is set to be the Row multiplied by two (e.g., 4x2=8). At step
1730, the new column (NEW_COL) for the selected object is
set to the object’s current column multiplied by four (e.g.,
4x4=16). At predefined process 1740, the selected object is
moved to the identified new row and column (e.g., row 8§,
column 16). See FIG. 5 and corresponding text for transfer
ball control processing details. At step 1750, the current Row
is decremented by one. A decision is made as to whether the
current row is equal to zero and therefore outside the matrix
(decision 1760). If the current row is not yet equal to zero,
then processing loops back to step 1720 to select and move
the next object from the original matrix. This looping contin-
ues until the row number is decremented to zero, at which
point decision 1760 branches to the “yes” branch. At step
1770, the current Column is decremented by one. A decision
is made as to whether the current Column is equal to zero and
therefore outside the matrix (decision 1780). If the current
Column is not yet equal to zero, then processing loops back to
step 1720 to select and move the next object from the original
matrix. This looping continues until the Column number is
decremented to zero, at which point decision 1780 branches
to the “yes” branch and processing returns to the calling
routine (see FIG. 16) at 1795.

FIG. 18 is a flowchart showing processing used to move
objects to correct rows in the two-dimensional sort. Process-
ing commences at 1800 whereupon, at step 1810, the current
Row is initialized to two since objects have been moved to
every other row starting with row two. At step 1820, the
current column is initialized to half of the Row (e.g., row two
divided by two results in column one, etc.). At step 1830, the
process selects the object currently residing at the current
Row and Column (e.g., Row two, Column one, etc.). At step
1840, the proper row for the selected object is retrieved from
sorted object matrix memory area 1635. At predefined pro-
cess 1850, the selected object is moved from its current row to
its proper row as identified at step 1840 while staying in the
same column. At step 1860, the current Column is incre-
mented by four since objects reside at every fourth column
within a row. A decision is made as to whether the current
Column is within the parameters of the surface area being
used to store the objects (decision 1870). If the current Col-
umn is being used to store objects, then decision 1870
branches to the “yes” branch which loops back to retrieve the
proper row for object residing at the current Row and current
Column and move the object to the proper row as described
above. This looping continues until the current Column is
incremented outside the bounds set for storing objects from
the matrix, at which point decision 1870 branches to the “no”
branch.

At step 1880, the current Row is incremented by two since
objects reside at every other row. A decision is made as to
whether the incremented current Row is outside the bounds of
rows used to store objects from the matrix (decision 1890). If
the current (incremented) Row is being used to store objects
from the matrix of objects, then decision 1890 branches to the
“yes” branch which loops back to step 1820 which initializes
the current Column to half of the current Row (e.g., if the
current Row as incremented is four, then the current column
is initialized to two, etc.). The objects currently residing on
the currently selected Row are then moved, as described
above, to their respective proper Rows according to the sorted
object matrix stored in memory area 1635. This looping con-
tinues until the current Row is incremented outside the

US 9,205,996 B2

21

bounds set for storing objects from the matrix, at which point
decision 1890 branches to the “no” branch and processing
returns to the calling routine (see FIG. 16) at 1895.

FIG. 19 is a flowchart showing processing used to group
objects in the two-dimensional sort. Processing commences
at 1900 whereupon, at step 1910, the Row is initialized to two
since the objects reside on every other row starting with row
two. At step 1920, the column is initialized to one. The new
column (NEW_COL) where the next object that is found will
be moved is initialized to one at step 1925. A decision is made
as to whether an object currently resides at the selected Row
and Column (decision 1940). If an object is at the selected
Row and Column, then the object is moved horizontally to the
new column (NEW_COL) at predefined process 1950 and, at
step 1960, the new column is incremented by one. On the
other hand, if an object does not currently reside at the
selected Row and Column, then decision 1940 branches to the
“no” branch bypassing predefined process 1950 and step
1960.

At step 1970, the selected Column is incremented by one.
A decision is made as to whether the selected Column is in the
object matrix (decision 1975). If the column is in the matrix,
then decision 1975 branches to the “no” branch which loops
back to check if an object resides at the selected Row and
Column and moves the object accordingly to the New Col-
umn (NEW_COL) position. This looping continues until the
selected column is not in the matrix, at which point decision
1975 branches to the “yes” branch. At step 1980, the selected
Row is incremented by two since objects reside, at this point,
on every other row. A decision is made as to whether the
selected Row is in the object matrix (decision 1990). If the
selected Row is in the matrix, then decision 1990 branches to
the “no” branch which loops back to initialize the selected
column to one (step 1920), check if an object resides at the
selected Row and Column, and moves the object accordingly
to the New Column (NEW_COL) position. This looping con-
tinues until the selected row is not in the matrix, at which
point decision 1990 branches to the “yes” branch whereupon
processing returns to the calling routine (see FIG. 16) at 1995.

FIG. 20 is a flowchart showing processing used to pack
rows of objects in the two-dimensional sort. Processing com-
mences at 2000 whereupon, at step 2010 the new row (NE-
W_ROW) is initialized to one. At step 2020, the selected Row
is initialized to two. At step 2030, the entire row of objects
residing at the selected Row is selected and, at predefined
process 2040, each of the objects in the selected Row is
moved to the new row (NEW_ROW).

Atstep 2050, the new row (NEW_ROW) is incremented by
one and, at step 2060, the selected Row is incremented by two
since the objects reside on every other row. A decision is made
as to whether the row, as incremented, is outside the bounds of
rows used to store the matrix (decision 2070). If the selected
Row is not outside the bounds of rows used to store the matrix,
then decision 2070 branches to the “no” branch which loops
back to select and move the row as described above. This
looping and moving of rows continues until the selected Row
is outside the bounds of rows used to store the matrix, at
which point decision 2070 branches to the “yes” branch
whereupon processing returns to the calling routine (see FI1G.
16) at 2095.

FIG. 21 is a first diagram showing the group of objects
being spread out and then moved to correct rows. Arrange-
ment 2100 shows the initial arrangement of unsorted objects
in a grid, or matrix, pattern. Processing shown in FIG. 17 is
used to spread the objects from arrangement 2100 to arrange-
ment 2110. Processing shown in FIG. 18 is used to move the

10

15

20

25

30

35

40

45

50

55

60

65

22

objects from their respective positions in arrangement 2110 to
their proper rows as shown in arrangement 2120.

FIG. 22 is a second diagram showing the group of objects
being grouped and packed to complete the two-dimensional
sort. Processing shown in FIG. 19 is used to group objects
from arrangement 2120 shown in FIG. 21 to arrangement
2200 shown in FIG. 22. The grouped objects shown in
arrangement 2200 are sorted using the linear sorting routine
shown in FIG. 13, resulting in the sorted objects as they
appear in arrangement 2210. Finally, the processing shown in
FIG. 20 is used to pack the objects from arrangement 2210 to
the packed and sorted arrangement shown in 2220.

One of the preferred implementations of the invention is a
client application, namely, a set of instructions (program
code) or other functional descriptive material in a code mod-
ule that may, for example, be resident in the random access
memory of the computer. Until required by the computer, the
set of instructions may be stored in another computer
memory, for example, in a hard disk drive, or in a removable
memory such as an optical disk (for eventual use in a CD
ROM) or floppy disk (for eventual use in a floppy disk drive).
Thus, the present invention may be implemented as a com-
puter program product for use in a computer. In addition,
although the various methods described are conveniently
implemented in a general purpose computer selectively acti-
vated or reconfigured by software, one of ordinary skill in the
art would also recognize that such methods may be carried out
in hardware, in firmware, or in more specialized apparatus
constructed to perform the required method steps. Functional
descriptive material is information that imparts functionality
to a machine. Functional descriptive material includes, but is
not limited to, computer programs, instructions, rules, facts,
definitions of computable functions, objects, and data struc-
tures.

While particular embodiments of the present invention
have been shown and described, it will be obvious to those
skilled in the art that, based upon the teachings herein, that
changes and modifications may be made without departing
from this invention and its broader aspects. Therefore, the
appended claims are to encompass within their scope all such
changes and modifications as are within the true spirit and
scope of this invention. Furthermore, it is to be understood
that the invention is solely defined by the appended claims. It
will be understood by those with skill in the art that if a
specific number of an introduced claim element is intended,
such intent will be explicitly recited in the claim, and in the
absence of such recitation no such limitation is present. For
non-limiting example, as an aid to understanding, the follow-
ing appended claims contain usage of the introductory
phrases “at least one” and “one or more” to introduce claim
elements. However, the use of such phrases should not be
construed to imply that the introduction of a claim element by
the indefinite articles “a” or “an” limits any particular claim
containing such introduced claim element to inventions con-
taining only one such element, even when the same claim
includes the introductory phrases “one or more™ or “at least
one” and indefinite articles such as “a” or “an”; the same
holds true for the use in the claims of definite articles.

What is claimed is:

1. A method, implemented by an information handling
system that includes one or more processors and a memory,
the method comprising:

receiving a request to sort a plurality of objects in a hori-

zontal direction, wherein the plurality of objects rest on
a surface of a plurality of vertically-adjustable low fric-
tion transfer modules, wherein the plurality of verti-
cally-adjustable low friction transfer modules are

US 9,205,996 B2

23

arranged in a grid formation on the surface across which
the plurality of objects are moved, and wherein each of
the plurality of objects is assigned a sort position;

selecting a plurality of sets of vertically-adjustable low
friction transfer modules from the plurality of vertically-
adjustable low {friction transfer modules that are
arranged in a grid formation on the surface, wherein
each of the sets of transfer modules are underneath a
different one of the plurality of objects; and

vertically adjusting the plurality of sets of transfer modules

causing each of the plurality of objects to move indepen-
dently from the other objects while avoiding the other
objects in two or more dimensions formed on the surface
so that each of the plurality of objects is moved to a
position respective of the other objects according to each
objects’ respective sort position.

2. The method of claim 1 wherein each of the objects are
initially positioned in a line formation on the surface, and
wherein the plurality of objects are moved to different posi-
tions in the line formation according to each objects’ respec-
tive sort position.

3. The method of claim 2 wherein a sufficient area of the
surface proximate to the initial line formation exists so that
each object can be placed on a row not shared with another of
the objects, wherein the method further comprises:

moving one or more of the objects so that each object

occupies a unique row on the surface;

moving one or more of the objects so that each object

occupies a unique column on the surface, wherein each
object’s column corresponds to the object’s respective
sort position; and

moving one or more of the objects to a common row so that

the plurality of objects are in the line formation accord-
ing the each object’s respective sort position.

4. The method of claim 2 further comprising:

selecting a first set of one or more objects and a second set

of one or more objects, wherein the first set of objects is
adjacent to the second set of one or more objects;
identifying a first sort position corresponding to the first set
of'one or more objects and a second sort position corre-
sponding to the second set of one or more objects;

10

15

20

25

30

35

40

24

comparing the first sort position and the second sort posi-
tion;

swapping the first set of one or more objects with the
second set of one or more objects in response to the first
sort position being greater than the second sort position,
wherein the swapping includes moving the first set of
objects after the second set of objects on the surface;

repeatedly performing the selecting, the identifying, the
comparing and the swapping until each object is in the
line formation according to each object’s respective sort
position.

5. The method of claim 1 wherein each of the objects are
initially positioned in a two-dimensional grid formation on
the surface, and wherein the plurality of objects are moved to
different positions in the two-dimensional grid formation
according to each objects’ respective sort position.

6. The method of claim 5 wherein a sufficient area of the
surface proximate to the initial two-dimensional grid forma-
tion exists so that each object can be placed on a column not
shared with another of the objects, wherein the method fur-
ther comprises:

moving one or more of the objects so that each object
occupies a unique column on the surface;

identifying a desired row corresponding to each object
based upon the object’s respective sort position;

moving one or more of the objects so that each object is at
the object’s identified desired row; and

swapping one or more of the objects within each of the
rows so that each of the objects is at the object’s respec-
tive sort position.

7. The method of claim 5 further comprising:

swapping one or more of the objects so that each of the
objects is at a row based on the object’s respective sort
position; and

swapping one or more of the objects so that each of the
objects is at a column based on the object’s respective
sort position.

